Review of Efficient Surrogate Infill Sampling Criteria with Constraint Handling
نویسندگان
چکیده
This paper discusses the benefits of different infill sampling criteria used in surrogate-model-based constrained global optimization. Here surrogate models are used to approximate both the objective and constraint functions with the assumption that these are computationally expensive to compute. The construction of these surrogates (also known as meta models or response surface models) involves the selection of a limited number of designs, evaluated using the original expensive functions. Conventionally this involves two stages. First the surrogate is built using an initial sampling plan; the second stage uses infill sampling criteria to select further designs that offer model improvement. This paper provides a comparison of three different infill criteria previously used in constrained global optimization problems. Particular attention is paid to the need to balance the needs of wide ranging exploration and focussed exploitation during global optimization if good results are to be achieved.
منابع مشابه
Enhancing infill sampling criteria for surrogate-based constrained optimization
Apopular approach to handling constraints in surrogate-based optimization is through the additionof penalty functions to an infill sampling criterion that seeks objective improvement. Typical samplingmetrics, such as expected improvement tend to have multimodal landscapes and can be difficult to search. When the problem is transformed using a penalty approach the search can become riddled with ...
متن کاملComparison of Infill Sampling Criteria
Kriging-based optimization methods are of great interest for aerodynamic design optimization where high-fidelity thus timeconsuming computational fluid dynamics (CFD) are used. In the framework of kriging-based optimization, a core technique called sampling infill criteria (also called adaptive sampling) is used both to search the design space and to refine the surrogate models. Among all the i...
متن کاملExploration of Metamodeling Sampling Criteria for Constrained Global Optimization
The use of surrogate models or metamodeling has lead to new areas of research in simulation-based design optimization. Metamodeling approaches have advantages over traditional techniques when dealing with the noisy responses and=or high computational cost characteristic of many computer simulations. This paper focuses on a particular algorithm, Efficient Global Optimization (EGO) that uses krig...
متن کاملEfficient Aerodynamic Optimization Using a Multiobjective Optimization Based Framework to Balance the Exploration and Exploitation
In many aerospace engineering design problems, objective function evaluations can be extremely computationally expensive, such as the optimal design of the aerodynamic shape of an airfoil using high-fidelity computational fluid dynamics (CFD) simulation. A widely used approach for dealing with expensive optimization is to use cheap global surrogate (approximation) models to substitute expensive...
متن کاملAn Efficient Algorithm for Reducing the Duality Gap in a Special Class of the Knapsack Problem
A special class of the knapsack problem is called the separable nonlinear knapsack problem. This problem has received considerable attention recently because of its numerous applications. Dynamic programming is one of the basic approaches for solving this problem. Unfortunately, the size of state-pace will dramatically increase and cause the dimensionality problem. In this paper, an efficient a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010